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The role of acoustics in flame/vortex interactions is examined via asymptotic analysis 
and numerical simulation. The model consists of a one-step, irreversible Arrhenius 
reaction between initially unmixed species occupying adjacent half-planes which are 
allowed to mix and react by convection and diffusion in the presence of an acoustic 
field or a time-varying pressure field of small amplitude. The main emphasis is on the 
influence of the acoustics on the ignition time and flame structure as a function of 
vortex Reynolds number and initial temperature differences of the reactants. 

1. Introduction 
Acoustic waves play a pervasive role in compressible flows even in the low Mach 

number limit. They are a necessary concomitant of nonlinear interactions such as those 
present in turbulent flows. For instance, the interaction of any disturbance, whether it 
is of the entropy or the vorticity type, with steep gradients as in shocked flows (e.g. 
McKenzie & Westphal 1968; Zang, Hussaini & Bushnell 1984) generates acoustic 
waves. Chemical reactions enhance them (Toong et al. 1974; Robert 1978; Clarke 
1985; Jackson, Hussaini & Ribner 1993). Conversely, acoustic waves can engender 
instability in laminar shear flows which may eventually suffer transition to turbulence 
(Goldstein & Hultgren 1989). In reactive flows, they play a similar critical role. It is 
now well established that they can significantly affect the stability of flames (McIntosh 
1986), the transition to detonation (Urtiew & Oppenheim 1966; Lee 1977; Shepherd 
& Lee 1992), etc. Oran & Gardner (1985) provide a fine review of combustion-acoustics 
interactions with an emphasis on the physics rather than the mathematical analysis and 
techniques. 

In the present study, the role of acoustics in the flame/vortex interaction process 
is investigated. In order to provide a proper perspective, the literature on the 
flame/vortex interaction problem is briefly reviewed here. This problem was first 
formulated by Marble (1985) to model one of the basic physical mechanisms 
underlying the complex processes of turbulent diffusion flames or combustion in 
vortex-dominated flows. The model consists of a diffusion flame with fast chemical 
kinetics (along the horizontal axis separating two reactants occupying the upper and 
lower half-planes) which is distorted by a vortex with its centre at the origin. The 
theoretical results have established that the flame sheet is rolled up into a spiral around 
the vortex on the convection timescale, forming a reacted core, and then spreads across 
the spirals on the diffusion timescale; the growth rate of the reacted viscous core obeys 
a similarity law, and so does the reactant-consumption rate which is independent of 
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time. These physical features are confirmed by numerical simulations (Laverdant & 
Candel 1988; Rehm et al. 1989; Norton 1983) implying, thereby, that the inclusion of 
shear (which was neglected by Marble) or finite-rate chemistry does not alter the 
qualitative picture. The premixed combustion in a vortex also displays similar features 
(Peters & Williams 1988). 

The aforementioned studies assume the simultaneous existence of a flame and a 
vortex and the subsequent evolution. Thus, they preclude ignition regime which is the 
main thrust of Macaraeg, Jackson & Hussaini’s (1992) work. Their work is based on 
the assumption of a constant-density, one-step Arrhenius reaction between the fuel and 
the oxidizer, occupying adjacent half-spaces, in the presence of a vortex with its centre 
on the axis of demarcation between the reactants. Their study focuses on the ignition 
time, location and the flame structure as a function of the vortex Reynolds number and 
the initial temperature differences of the reactants. In the absence of the vortex, the 
problem, of course, reduces to the classical case of Linan & Crespo (1976) who 
analysed the continuous temporal evolution of such a configuration from nearly frozen 
flow to near equilibrium flow. The reactants mix by diffusion until, at some finite time, 
a thermal explosion occurs at a well-defined location, and ignition takes place. After 
ignition, a pair of deflagration waves (or premixed flamelets) emerges according to 
classical thermal explosion theory. These premixed flamelets are quite weak in that the 
temperature rise associated with them is small, and they exist only until all of the 
deficient reactant is consumed. Just beyond the deflagration waves, a diffusion flame 
regime exists where the mixing process is governed by diffusion in the direction normal 
to the flame. As time increases, the diffusion flame approaches a flame sheet. We note 
that the existence of a well-defined ignition point and the premixed flamelets depends 
critically on the relative magnitudes of the two initial temperatures to that of the 
adiabatic diffusion flame temperature. That is, if the adiabatic diffusion flame 
temperature is greater than either initial temperature, a well-defined ignition point 
always occurs, followed by the premixed flamelets. On the other hand, if the adiabatic 
diffusion flame temperature is between the two initial temperatures, there is no well- 
defined ignition point, and a single premixed flame merges smoothly into the diffusion 
flame. This configuration of a triple-flame (or tribrachial flame) appears to be of such 
a fundamental nature that it also exists in steady supersonic reacting laminar mixing 
layers (e.g. Jackson & Hussaini 1988; Grosch & Jackson 1991) and Aames propagating 
into a non-uniform mixture (e.g. Buckmaster & Matalon 1988; Dold 1989; Hartley & 
Dold 1991). 

The initial presence of a vortex alters the picture considerably (Macaraeg et al. 1992). 
First, a hot spot develops within the viscous core of the vortex and evolves into an 
almost circular flame which grows with time according to a similarity rule and so does 
the reactant-consumption rate, as in the case of Marble. Next, the Linan & Crespo 
scenario or the tribrachial flame configuration must evolve at infinite distance to the 
right and left of the origin. The diffusion flames emanating from this configuration then 
move toward and finally merge with the flames in the reacted core region. The above 
picture is only valid for the case when the adiabatic flame temperature is greater than 
either of the two initial temperatures. When the adiabatic flame temperature lies 
between the initial temperatures, a well-defined ignition point does not occur, but 
rather the premixed region merges smoothly into the diffusion flame region, 
independent of the vortex Reynolds numbers. This scenario is consistent with the 
Linan & Crespo analysis. 

The presence of an acoustic field or time-dependent pressure perturbation affects 
both the ignition and the flame structure. To investigate the ignition regime, an 
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asymptotic theory is developed here which holds strictly for near-equal temperatures 
of the reactants. For low frequencies of a time-periodic pressure perturbation, ignition 
can be accelerated or significantly delayed depending on the phase. For moderate to 
high frequencies ignition is always enhanced. An approximation based on homo- 
geneous ignition theory is given which predict these trends very well, and therefore is 
proposed as a good engineering approximation for obtaining the ignition times for the 
more complicated flow fields. For the complete time evolution from nearly frozen flow 
to near equilibrium flow, an asymptotic analysis based on small heat release is 
employed. In this limit, direct simulations show that acoustics have little effect on the 
flow field in the vortex core, while the flow outside the core oscillates. It is believed that 
viscosity in the reacted core damps out the acoustic field. 

In the next section the problem is formulated. Section 3 presents an analysis of the 
ignition regime, valid only for near-equal initial temperatures of the reactants, using a 
combination of large activation energy (and hence, large Zeldovich number) 
asymptotics and numerics for several different pressure profiles. The pressure profiles 
chosen are either a linear, or a pulse, or a sinusoidal function. This last case is stressed 
since it represents a single Fourier component of a more general pressure disturbance. 
Also in this section, the approximation based on the homogeneous ignition theory is 
presented. Section 4 presents selected numerical results of the continuous evolution 
from nearly frozen flow to near equilibrium flow for the sinusoidal pressure profile 
under the assumption of small heat release. A description of the diffusion flame regime 
is given in 0 5 and our conclusions are presented in 8 6. 

2. Problem formulation 
In this section the problem of the time evolution of initially unmixed species 

occupying adjacent half-planes which are then allowed to mix and react in the presence 
of a vortex subject to pressure disturbance is formulated. The non-dimensional 
equations governing this field, assuming constant viscous and thermodynamic 
properties, are given by Buckmaster & Ludford (1982) and Williams (1985) : 

(2.1 a) 
(2.1 b) 
(2.1 c) 

pT = 1 + 6P,(t) + yM2F(x,y ,  z ,  t) ,  

Pt + ( P a  + ( P I ,  + (PW),  = 0, 
p[u, + uu, + uuy + wu,] + = Sc(V2u + &), 

p[v, + UD, + vv, + wu,] + 5 = Sc(V2v + $KY), 
p[w,  + uw, + uw, + ww,] + < = Sc(V2w + +K,), 

(2.1 d )  
(2.1 e )  

- ( y - 1 ) M 2 [ ~ + u ~ + v v l ' + w ~ ]  = V2T+(y- l ) M 2 S c @ + p 2 ,  (2.lfl 

p [ ~ , , + u E ; , . + v ~ , , + w ~ , , ]  =v2I;j-sz, j =  1,2, (2.1 g) 
1;2 = D a p 4  F, e-ZelT, (2.1 h) 

where K =  ux+uy+wz,  @ is the viscous dissipation term, and V2 is the three- 
dimensional Laplacian operator. Here, (u, u, w) are the velocity components in the 
( x , y , z )  directions, respectively; p is the density; T is the temperature; and 4 and F, 
the mass fractions of the fuel and oxidizer, respectively. The total pressure 
P = 1 +6P,+yM2P is written as the sum of the compressible component P, plus 



582 T. L. Jackson, M .  G .  Macaraeg and M .  Y.  Hussaini 

incompressible component p, as is consistent with the small-Mach-number approxi- 
mation (e.g. Majda 1984), with 6 the amplitude of the compressible component. 
The actual size of 6 will be chosen in the course of the analysis. The chemical model 
is assumed to be a one-step, irreversible Arrhenius reaction. The non-dimensional 
parameters appearing above are the Schmidt number Sc = v / D  assumed equal for both 
species, with D the species diffusion coefficient and v the kinematic viscosity; the 
Zeldovich number Ze = E/(RoTm), with E the dimensional activation energy and Ro 
the universal gas constant; the Damkohler number Da, defined as the ratio of the 
characteristic timescale t ,  to the characteristic reaction timescale t,; y the ratio of 
specific heats; and finally p the heat release per unit mass of I;1,?. In specifying the 
Damkohler number in the course of the analysis, the appropnate choice for the 
characteristic timescale is made. The density, temperature, pressure and mass fractions 
were non-dimensionalized by their initial values p,, T,, P = p, ROT, and &, m, 

respectively, that would prevail if there were no pressure disturbances. The Lewis 
number was assumed to be unity, which implies that Sc = Pr, where Pr = pm C, v /h  is 
the Prandtl number, h is the thermal conductivity and C, is the specific heat at constant 
pressure. Lengths and velocities are referred to the relevant diffusion characteristic 
scales 12, = Dt, and U, = la/&, respectively. In this case, the Reynolds number based on 
this choice of I ,  and U, is given by Re = I, U,/v = 1/Sc. The Mach number M is 
defined as Ua/a,, the ratio of the characteristic diffusion speed to the speed of sound. 
The above choices for t,, l,, and U, are consistent with the scales chosen in the absence 
of a vortex. 

An analysis of the ignition zone with acoustic interactions must take into account the 
two fundamental ratios 

characteristic time, t ,  - IJU, 

p3 

-- r =  acoustic time, tu lalam ' 

characteristic acoustic length - 1, N =  -- 
diffusion length 1, 

Thee two ratios are related via 
r = l / N M ,  

where M is the Mach number defined above. Here, our analysis is based on the 
assumption that r = O( I), and hence the acoustic wavelength is much longer than the 
characteristic diffusion lengthscale for small Mach numbers. Thus, the pressure 
gradient within the combustion zone is negligibly small and the pressure is essentially 
a function of time, and so the flame is treated as isobaric to an excellent approximation. 
In addition, our analysis further assumes that the magnitude of the acoustic time 
relative to the reaction time is given by 

characteristic time, t, - t ,  - Da = - r-. 

Taking r = 0(1), we shall assume that the reaction time is much faster than the 
acoustic time, and so we take the Damkohler number to be proportional to 

reaction time, t ,  t R  

eze 
Ze D a w - ,  

where Ze % 1 is the Zeldovich number defined above, thus defining the characteristic 
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time. The exact form is chosen in the course of the analysis. In our analysis, if the Mach 
number M was not chosen small, we would also need to consider spatial variations of 
the pressure disturbance inside the reaction zone. 

I t  should be noted that, for compressible flows, spatial variations of the pressure 
disturbance must be taken into account. This leads to the well known Kapila-Clarke 
equation in which thermal runaway occurs somewhere between the constant-pressure 
case and the constant-volume case. Here, the characteristic length ld is but a fraction 
of the acoustic wavelength 1, in the limit of zero Mach number, so that pressure 
variations across the region studied are small and the flame can be treated as isobaric 
to a good approximation. Thus, our analysis is essentially incompressible, and so the 
explosion is always close to the constant-pressure case. Indeed, for the constant- 
volume case (i.e. pI = 0), the gas law ( 3 . 3 ~ )  shows that = PJy- 1, and since P, is 
known and fixed from the outside acoustic field, the temperature perturbation can 
never become unbounded, contradicting the fact that ignition must take place. This, of 
course, is not the case when the Mach number is O( l), since the pressure perturbation 
can become unbounded. A relevant discussion of the different scales involved, and the 
proper conditions in which the Clarke-Kapila equation can arise, can be found in 
Kassoy, Kapila & Stewart (1989). 

McIntosh (1986, 1989, 1991 and McIntosh & Wilce 1991, and the references cited 
therein) pointed out the importance of the two fundamental ratios given above when 
the characteristic velocity is given by the flame speed U,. For this case, three distinct 
cases of flameacoustic interactions arise depending on the magnitude of 7, and there 
have been classified in McIntosh (1991). Further phenomena can exist depending on 
the magnitude of the acoustic time/reaction time ratio, and a discussion of this can be 
found in Clarke (1985). For 7 = 0(1), McIntosh & Wilce (1991) point out that audible 
sound and its interference with flames would come under this category, and a 
considerable body of work exists using this assumption (e.g. references cited therein). 

We shall now assume that the flow is independent of the downstream direction x for 
all time. Although not true for any real flow situation, it is consistent with experimental 
observations that streamwise vortical structures in turbulent mixing layers are 
essentially aligned with the flow and are of great extent. Also, neglecting the x- 
dependency can be thought of as a local approximation for the vortices found in 
turbulent flames. This type of approximation has also been used previously in 
describing the evolution of a shear flow with an embedded streamwise vortex (Corcos 
1988; Pearson & Abernathy 1984). We shall also assume that the Mach number is 
small, as is typical for flames (e.g. Buckmaster & Ludford 1982; Williams 1985). Thus, 
the governing equations (2.2), in the limit of small Mach number and neglecting all 
dependency in x, reduce to 

pT = 1 +6P,(t), (2.2a) 

Pt + (PV), + (pw),  = 0, 
p[ut + VU, + wu,] = sc v2u, 

p[u, + nu, + wuz] + P, = Sc(V2u + &), 
p[w,+vw,+ wW,]+e = Sc(V2w+$K2), 

p[F;,,+U&+wq,,] = V Z I y 2 ,  j =  1,2, 

(2.2b) 

(2.2d) 
(2.2e) 

(2-2f) 

(2.2 c) 

where V2 = ( )g, + ( ),= is the two-dimensional Laplacian operator, K = uy + wz, and 
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we have considered the distinguished limit M 2  4 6 4 1 .  Since we are interested in 
reacting flows with vortical motion, we transform (2.2) into cylindrical coordinates 
( y ,  z) -+ ( r ,  8) by using the transformations y = r cos 8 and z = r sin 8. If we define g to 
be the radial velocity and h to be the tangential velocity, i.e. v = gcos8-hsin8 and 
w = g sin 8 + h cos 8, then (2.2) transforms to 

pT = 1 + 6Pc(t), (2.3 a) 

Pg - (2.3 b) 1 
Pt+(Pg)r+;(ph)e+T - 0, 

(2.3 c)  ut+gu,+;u,] h = s c v 2 u ,  

p gc+ggr+-gO--  +c=sc ( V2g----h r2 r2 e ++K,, [ r r g 2  1 
h 2  1 

ht+gh,+-hO+- + - P , = S C  V2h- -+-  +- 
r "1 r - ( ,.a ,.age 3,.Ke), 

(2 .3d)  

(2.3 e) 

h 
p [ 4 , t + g 4 , r + ; 6 , e ]  = v~<-Q,  j =  192, (2.3g) 

where V 2  is now the two-dimensional Laplacian operator in cylindrical coordinates, 
and K = gr+g/r+h, /r .  The system (2.3) must be solved subject to appropriate 
boundary and initial conditions. 

Since it is known that small pressure disturbances of O(Ze-') can cause O( 1) changes 
in certain flame properties such as the burning rate, extinction, transition from laminar 
to turbulence, etc. (Buckmaster & Ludford 1982; Buckmaster 1992; Kapila 1992), we 
shall limit our attention to small pressure disturbances by defining for the total pressure 

the factor y / ( y -  1 )  in the definition of 6 was chosen for convenience. Thus, we are 
concerned with O(Ze-') acoustic perturbations superimposed on a basic state. The 
pressure perturbation P,(t) can be determined by solving the acoustic equations in the 
outer field (e.g. Van Harten, Kapila & Matkowsky 1984), and indicates that the 
pressure can be controlled, for example, from the surroundings. A general expression 
for P, can be found in Majda (1984) and will depend on the type of conditions imposed 
on the geometry under consideration. Since we are interested in the influence of 
pressure variations on the flame, we will not solve this outer problem and, henceforth, 
consider the pressure disturbance P, to be prescribed. 

We note here that it is the density that couples the momentum equations to the 
temperature and mass fraction equations. As such, the numerical solution to the full 
system (2.3) is a formidable task. One approximation that will simplify (2.3) to a more 
tractable system is the assumption of small heat release (e.g. Van Harten et al. 1984). 
The resulting system can then be solved numerically, and will be presented in $ 4 .  For 
the ignition problem, the assumption of small heat release is not needed in order to 
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simplify the system, provided that we restrict the analysis to near-equal initial 
temperatures, and hence densities, of the two gases. This analysis is presented in the 
following section. 

3. Ignition 
F, = 0. For 

t > 0, the fuel and oxidizer begin to mix by diffusion, as well as by convection due to 
the presence of the vortex, and the reaction rate is no longer zero. For small time, it 
can thus reasonably be assumed that the effect of the reaction on the overall flow field 
is small. The solution for small time in which the reaction rate term is neglected is 
known as the inert or chemically frozen solution, and will be denoted by the superscript 
I .  In what follows, we only consider the case of near-equal initial temperatures. This 
assumption leads to the inert solutions T' = p' = 1 + O(Ze-'), where the O(Ze-') term 
is included to allow for small initial temperature differences that might exist in the 
absence of any pressure disturbances. Thus, the leading-order inert solution 
corresponds to the constant-density approximation prevalent in the combustion 
literature. As time increases, more of the combustible mixes until, at some finite time, 
a thermal explosion occurs characterized by significant departure from the inert. To 
analyse the ignition process, we determine the effect of the growing reaction rate by 
expanding about the inert solution as 

At time t = 0, the reaction rate is exactly zero owing to the product 

T = 1 + Ze-'[T, + P,(t)] + O(Ze-'), p = 1 + Ze-'p, + O(Ze-'), E; = F: + O(Ze-'), 
( 3 . 1 )  

and take the asymptotic limit Ze + co. The leading-order equations are given by 

( 3 . 3 4  

g f + - h i + -  1 g' = 0, (3 .3  b) 

1 
p1 + q = -C(t), 

Y - 1  

r r 

h' 
r 

uf + g'uf + - u; = s c  V ' U I ,  ( 3 . 3 4  

(3.3d) 

(3.3e) 

where we have chose the Damkohler number Da to be 
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and A is some constant that will be chosen in the course of the analysis. This particular 
choice of the Damkohler number ensures that a distinguished limit exists, in that the 
reaction rate term is of the same order in a Zeldovich number expansion as the time 
derivative terms (see e.g. Buckmaster & Ludford 1982). Note that the pressure 
disturbance now appears in the exponential and thus will play a crucial role in the 
ignition process. 

We first see that the continuity and momentum equations ( 3 . 3 k e )  are decoupled 
from the rest of the system and thus will completely determine u', g', h' and P. At 
t = 0, we situate a point vortex at the origin and allow it to diffuse under the action of 
viscosity. Then, assuming the flow in the (r,  @-plane to be axisymmetric, the induced 
flow field is given by (Lamb 1932) 

I, h' = - R Sc [ 1 - e-r2/4t sc 
r 

and u' is found from the equation 

h' 
r u:+-u; = SCV2U'. 

(3.5) 

(3.7) 

The solution (3.5F(3.6) is the solution for the incompressible Oseen vortex, where 
R = r/2nv is the vortex Reynolds number and r is the circulation parameter. The 
vortex Reynolds number R is considered as a free parameter and its choice determines 
the importance of the vortex in the initial mixing of the reactants. When R = 0 (i.e. 
r = 0), there is no vortex and the initially separated reactant mix by diffusion only. 
When the vortex Reynolds number R is non-zero, the initially separated reactants mix 
by diffusion and convection. The solution to (3.7) has been discussed previously in the 
context of streamwisespanwise vorticity interactions for non-reacting flows (Corcos 
1988; Pearson & Abernathy 1984). Note that u' does not appear in the temperature or 
mass fraction equations since we neglected variations in x qoupled with the zero-Mach- 
number approximation, and so the analysis is valid for either streamwise or spanwise 
vortices. The velocity component u' will influence the temperature equation if true 
compressibility effects are taken into account ; this will necessarily occur after ignition 
has taken place. 

and F:: With g' and h' now known, the following equations can be solved for 

j =  1,2. (3.9) 

The appropriate boundary and initial conditions are given by 
= 0,F: = 1,Fi = 0 at 

F 

t = O,r > 0,O < 8 < x ,  and t > O,r+ o 0 , O  < 0 < n, 
(3.10a) 

- q5-l at t = 0 , r  > 0 , x  < 8 < 2x, < = p,,F,' = O,F,' = 2 ~ 2 2  = 
4 , m  

and t > O,r+oo,x c 6 < 2n;, (3.106) 
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where r$ is the equivalence ratio defined as the ratio of the initial mass fraction of the 
fuel 4, oo to the initial mass fraction of the oxidizer 5, --oo and PT is the parameter that 
allows for small initial temperature differences in the absence of pressure disturbances. 
If q5 = 1, the mixture is said to be stoichiometric; if q5 > 1 it is fuel rich; and if r$ < 1, 
it is fuel lean. Also, if PT is less than zero, the oxidizer (species 2) is relatively cold 
compared to the fuel (species 1); and if PT is greater than zero, it is relatively hot. As 
t increases, the solution for q becomes unbounded at some finite time (ti,) and location 
(ygg., Z ~ J .  This characterizes the ignition regime. The special case R = 0, in which two 
initially unmixed species are allowed to diffuse without the mixing generated by the 
vortex, will be discussed in g3.1, while the case for R > 0 will be presented in $3.2. 
Finally, with determined, the density perturbation p1 can be found from ( 3 . 3 ~ ) .  

3.1. R = 0 
In the absence of any vortical motion, the governing equations reduce to the 
reactivdiffusive equations 

(3.11) 

(3.12) 

subject to the boundary and initial conditions 

T , = O , F : =  l ,F:=O at t = O , z > O  and t>O,z - - tw,  ( 3 . 1 3 ~ )  

q = P T , F f = O , F ; = $ - '  at t = O , z < O  and t > O , z + - w .  (3.13b) 

The parabolic equations for the mass fractions can be integrated to yield 

F: = Y, F: = $-'( 1 - u), (3.14) 

where Y = a( 1 + erf q), (3.15) 

and 7 is the similarity variable, defined as 

Z 
q = 7 .  

2 t* 
(3.16) 

Upon substituting the inert solutions into the temperature perturbation equation, and 
transforming to the similarity plane, a single equation for 

9 (3.17) 

emerges, given by 
4tT,,,-T,,,,-27T,,, = 4 t Y ( l -  w e  T,+P,(t) 

which must be solved numerically subject to the boundary and initial conditions 

q = O  at t = O , z > O  and T>O,z+-oo, (3.18 a) 
q = P T  at t = O , z < O  and T>O,z+-co .  (3.18b) 

Here, the constant A appearing in the definition of the Damkohler number has been 
chosen to be q5 for convenience. The special case of no pressure disturbance (P, = 0) 
corresponds to the results of Linan & Crespo (1976) which has been discussed in the 
Introduction. Thus, the results of this subsection can be thought of as an extension of 
the Linan & Crespo problem to include pressure disturbances. In the following 
subsections we will select three different pressure variations, and compare with the 
results of Linan & Crespo. The first two choices for the pressure variation presented 
below correspond to the choices taken by Ledder & Kapila (199 1) in their study of the 
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FIGURE 1. Plot of the maximum of the temperature perturbation T, as a function of time t for 
several values of w and for p, = 0. Linear pressure profile. 

response of premixed flames to pressure perturbations. The last choice will be a 
sinusoidal pressure variation, which represents a single Fourier component of a more 
general pressure disturbance. 

3.1.1. Linear pressure decrease 
Let the flow be subject to a linear pressure decrease at t = 0 of the form 

P,(t) = -wt ,  (3.19) 

where l / w  > 0 characterizes the timescale of the pressure disturbance. The influence of 
this linear pressure profile on premixed flames has been discussed by Ledder & Kapila 
(1991), in which extinction was seen to occur for all values of w. This profile was chosen 
for this study because of its simplicity in form in that the ignition time and location will 
only be a function of the parameters w and PT, and also may represent the first term 
in a Taylor series expansion of a more general pressure disturbance. Figure 1 is a plot 
of the maximum of versus t for several values of w and PT = 0. The case w = 0 
corresponds to that of Linan & Crespo (1976) in which no pressure disturbance is 
present. As w is increased from zero, the ignition time also increases until, at some finite 
value w = o, z 0.1395, the ignition time is pushed to infinity. Thus, small values of w 
can significantly delay ignition. For values of w greater than w,, the maximum 
initially increases, reaches a maximum, then begins to decrease back to zero as time 
increases further. Thus, ignition does not occur in the classical sense. Mathematically, 
when the pressure disturbance becomes large and negative, the nonlinear source term 
of (3.17) becomes exponentially small and so can be neglected; then evolves 
according to a homogeneous heat equation. Although the solution of this system 
suggests that ignition will not occur for w greater than w,, we note that the presence of 
an infinite amount of fuel and oxidizer necessitate that ignition will eventually take 
place. Asymptotically, the expansion (2.4) breaks down when t is of O(Ze), and a new 
expansion must be employed, one which allows O( 1) changes in the pressure and the 
temperature; the waves now cease to be acoustic in nature. The leading-order system 
in this case is no longer that with constant density and, hence, the full system (2.3) must 
be solved numerically. This numerical problem is beyond the scope of the present 
study. Figure 2 is a plot of the ignition time t,, versus w for three values of the 
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FIGURE 2. Plot of the ignition time ti, as a function of w for several values of p,. 

Linear pressure profile. 

temperature ratio parameter PT. The case of PT = 0 was presented in a slightly different 
manner in figure 1 .  Here, it is clear that as w approaches 0.1395 from below, the 
ignition time goes to infinity, and for w greater than 0.1395 there is no ignition. The 
case w = 0 corresponds to that of Linan & Crespo (1974); ignition time increases as PT 
is decreased from zero (Z$, is relatively cold compared to 4, ,), and decreases as PT 
is increased from zero. For each value of the temperature-ratio parameter, a critical 
value of w is seen to exist ; this value being less than 0.1395 for negative PT and greater 
than 0.1395 for positive values of PT. In the absence of any pressure disturbance, Linan 
& Crespo has shown that ignition takes place along a line parallel to the y-axis which 
is located at ztg = 0 for PT = 0 and resides in the hotter region for BT =+ 0. In the 
presence of the linear pressure disturbance and for PT = 0, ignition always occurs 
along the line zig = 0 for any value of o. However, for PT += 0, the ignition line z = zlg 
(zig < 0 for PT > 0, and ztg > 0 for PT < 0) moves toward the line z = 0 as w is 
increased. 

3.1.2. Pressure pulse 
Let the flow be subject to a pressure pulse at t = 0 of the form 

e(t) = 4PA(2-Wt2 - 2-2Wt2), (3.20) 

where w-i > 0 is the pulse width and lPAl is the amplitude of the pressure pulse. This 
corresponds to a smooth increase beginning at zero, increasing or decreasing to an 
extremum lPAl at wt2 = 1, and finally returning to zero. The influence of this pressure 
pulse on premixed flames has been discussed by Ledder & Kapila (1991), in which 
extinction is seen to occur for both negative and positive amplitudes, depending upon 
the parameters of the problem. Figure 3 is a plot of ignition time t,, versus o for various 
values of the amplitude PA with PT = 0. The case of PA = 0 corresponds to that of 
Linan & Crespo (1976) and is shown in the figure as a dashed line for reference. In 
addition, all data curves shown in this figure begin at ti, = 5.8285 at w = 0, again 
consistent with the results of Linan & Crespo. For fixed PA < 0, the ignition time 
initially increases as w increases from zero, reaches a maximum, and then begins to 
decrease as w is increased further, reaching an asymptote as w+ 00. For fixed w, 
decreasing the pressure amplitude from zero increases the ignition time. Thus, ignition 
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FIGURE 3. Plot of the ignition time t,, as a function of w for several values of PA and for p, = 0. 
The dashed curve corresponds to the results of Linan t Crespo (1976). Pulse pressure profile. 

40 

30 

tig 20 

10 

I I I I I I 
0 0.002 0.004 0.005 

0 

FIGURE 4. Plot of the ignition time t(g as a function of o for PA = - 4  and for p, = 0. 
Pulse pressure profile. 

is delayed for negative pressures. In contrast to the previous case, for a positive 
pressure pulse the ignition time decreases monotonically as o is increased from zero 
and asymptotes to a finite non-zero value as w -+ co ; hence, ignition is enhanced. Since 
PT = 0, ignition takes place along a line parallel to the y-axis located at zlg = 0 for any 
value of PA and w. The general behaviour described in figure 3 for PT = 0 is seen to hold 
for any value of BT, the only exception being the starting value of f i g  at o = 0; for 
PT < 0, the starting value is above that given in the figure, while for BT > 0 it is below. 
In addition, the location of the ignition line resides in the hotter region and moves 
toward z = 0 as w is increased from zero for fixed PA. 

An interesting feature is seen to occur as PA is further decreased below -2. This is 
shown in figure 4 where we plot tag versus w for PA = - 4 and PT = 0. The ignition time 
increases slowly up to about w w 0.0018, where a sudden jump in t fg  occurs. As w 
increases still further, the ignition time reaches a maximum and then begins to decay 
slowly, reaching an asymptote as w + 00. To better explain this jump phenomenon, we 
plot in figure 5 the maximum of versus time for several values of w. Note that there 



Role of acoustics in flamelvortex interactions 59 1 

12 

10 

8 
n 

4 

2 

0 

n nn7 

1.0024 

10 20 30 40 
t 

FIGURE 5. Plot of the maximum of the temperature perturbation T, as a function of time t for 
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FIGURE 6. Plot of the maximum of the temperature perturbation as a function of time for 
o = 0.005, PA = -4, and /3T = 0. The dashed curve is the pressure profile. Pulse pressure profile. 

is a sudden jump in the ignition time between w = 0.0018 and w = 0.002. For values 
of w below 0.0018, the maximum temperature perturbation is seen to increase 
monotonically, becoming infinite as t approaches tt?. For values of w greater than 
about 0.00 18, the maximum temperature perturbation increases at first, decreases 
slightly, and then increases sharply and becomes unbounded as t --f tig. In the region 
where the maximum decreases, the pressure disturbance dominates in the exponent of 
(3.17), yielding a region where the chemical activity is suppressed, and so the 
temperature evolves according to a homogeneous heat equation; this parallels that of 
the linear pressure case. However, unlike the linear pressure case, the pulse does not 
grow unbounded, but instead reaches a minimum and then increases back to zero. 
Thus, there exists some finite time at which the pressure no longer dominates the 
exponent, and the problem begins to once again evolve according to classical thermal 
explosion theory. A comparison of the pressure pulse and maximum temperature 
perturbation is provided in figure 6 for one selected value of o. Note that the maximum 
in decreases over most of the pressure pulse, and that the temperature again rises 
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FIGURE 7. Plot of the ignition time t,, as a function of phase @ for several values of the frequency 
w and for p, = 0: (a) PA = 1 ;  (b) PA = 2; ( c )  PA = 4. The dashed curve corresponds to the results 
of Linan & Crespo (1976). Sinusoidal pressure profile. 

once the pressure increases to some critical value. Finally, we note here that the above 
behaviour was seen to occur numerically for all pressure amplitudes less than about 
-2.8, and also occurs for non-zero values of PT. 
3.1.3. Sinusoidal pressure variation 

Let the flow be subject to a sinusoidal pressure variation at t = 0 of the form 

&(t) = PA sin (wt + Q,), (3.21) 

where w > 0 is the frequency, PA is the amplitude, and Q, is the phase of the pressure 
variation. This profile was chosen since it can be regarded as a single Fourier mode of 
a more general pressure disturbance. Figure 7 ( 4  is plots of t8s versus the phase angle 
Q, for PA = 1,2,4, respectively, and for various values of w with PT = 0. The case of 
PA = 0 corresponds to that of Linan & Crespo (1976) and is shown in each figure as a 
dashed line for reference. We begin by noting that there are several important features 
which are common to all three figures. These are: (i) the maximum ignition time at a 
fixed amplitude corresponds to zero frequency with a phase angle greater than n 
(corresponding to an initial negative pressure wave), and that this maximum decreases 
and shifts to lower phase angles as w is increased from zero; (ii) for frequencies 
w z 1 and greater, the ignition time always lies below that of the dashed line for any 
phase angle and amplitude, indicating that ignition is enhanced over the zero-pressure- 
disturbance case; and (iii) for the high-frequency range (w > 5 ) ,  the ignition time is 
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FIGURE 8. Plot of the maximum of the temperature perturbation as a function of time for 
PA = 4, w = 0.1, @ = n, and p, = 0. The dashed curve is the corresponding sinusoidal pressure 
profile. 

approximately a constant over the entire range of phase angles, and that this constant 
value decreases as the pressure amplitude PA increases. 

The same interesting feature that occurred for the pressure-pulse case is also seen to 
occur for the sinusoidal-pressure case, namely that the ignition time undergoes a 
sudden jump in its value for certain combinations of amplitude, frequency, and phase. 
The jump phenomenon in the ignition time is clearly shown in figure 7(c)  for PA = 4. 
For the curves w 2 0.1, the ignition time drops slowly as Q, is increased from zero, 
reaches a minimum, and then begins to increase slowly as Q, is increased further until 
a critical value of Q, is reached, where the ignition time then undergoes a sudden jump 
in its value. As Q, increases still further, the ignition time reaches a maximum and then 
begins to decrease back to its original value at Q, = 0. To better explain this jump 
phenomenon, we plot in figure 8 the maximum of versus time for PA = 4, w = 0.1 
and Q, = R .  The corresponding pressure wave is displayed as the dashed curve. In the 
region where the maximum temperature perturbation is almost constant, the pressure 
perturbation dominates in the exponent of (3.17) yielding a region where the chemical 
activity is suppressed, and so the temperature evolves according to a homogeneous 
heat equation, and ignition is delayed. As the pressure rises to some critical value, 
chemical activity resumes and ignition soon takes place according to classical thermal 
explosion theory. 

Figure 9(a, b) shows that regions of chemical inactivity can exist in the ignition 
regime even in the high-frequency limit. Figure 9(a)  shows the maximum of as a 
function of time for PA = 2, w = 5 ,  and Q, = n/lO, while figure 9(b)  is a similar graph 
except now w = 10. In each graph, the corresponding pressure variation is shown as a 
dashed curve. Note that there are now several regions where the maximum temperature 
perturbation decreases and hence chemical activity is suppressed, with the pressure 
variation being negative in each of those regions. 

Finally, we note here that the general behaviour described in figures 7-9 for 
BT = 0 is seen to occur for any value of PT. The only exception being that for PT c 0 
the ignition time is greater than that given for /3 = 0, while for PT > 0 it is less. 
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PA = 2, @ = n/10, & = 0. The dashed curve is the corresponding sinusoidal pressure profile. (a) 
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3.2. R > 0 
When vortical motion is taken into account, the governing reactive convection- 
diffusion equations for the temperature and mass fraction perturbation are 

(3.22) 

(3.23) 

subject to the conditions (3.10). This system was solved numerically for a range of R, 
PT = 0, Sc = $ = 1 ,  and with an assumed form for the pressure variation term P,(t). 
Implementation of boundary conditions is facilitated if the system is recast in Cartesian 
coordinates. The solution technique is a second-order finite difference scheme on a 
non-uniform mesh. To resolve the structure in the core region of the field, a coordinate 
stretching is used. To avoid the singularity at the origin, no mesh points are placed 
there. The outer boundaries are set at 50 or 200 in the y-direction, and 20 or 50 in the 
z-direction. Grid resolution studies which at least doubled the computational mesh 
were carried out to ensure that structures were well resolved. The resolutions required 
ranged from a 642 mesh to a 2562 mesh for large vortex Reynolds number. The time- 
stepping scheme is of four-stage Runge-Kutta type which is formally second-order but 
has an extended stability region making it accurate and robust for moderately stiff 
problems. All runs were performed on a Cray YMP. 

As t increases, the solution for q becomes unbounded at some finite time (tag) and 
location (ydg ,  zeg). This characterizes the ignition regime. The special case R = 0, in 
which two initially unmixed species are allowed to diffuse without the mixing generated 
by the vortex, has been presented in $3.1. For this case, ignition takes place along a line 
parallel to the y-axis which is located at zig = 0 for PT = 0 and residues in the hotter 
region for pT =l 0. For R > 0, previous work (Macaraeg et al. 1992) has shown, in the 
absence of a pressure disturbance, that ignition occurs at a point rather than along an 
entire line. The ignition point is located at the origin for /IT = 0 and for any value of 
R, and in the hotter region for FT =k 0. For /IT =l= 0, the ignition location spirals 
clockwise towards the viscous core centre as R is increased from zero, with ignition 
taking place within the core for R > 70. 
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FIGURE 10. Plot of the ignition time versus phase @ for (a) PA = 2 and (b) PA = 4 with o = 0.5 
and for vortex Reynolds number R = 0 (solid) and R = 100 (dashed). 

To determine the combined effects of the vortex and a pressure disturbance on the 
ignition time, we produce here selected results using the sinusoidal pressure function 
(3.21) for P,(t). In all calculations, we fix Sc = 9 = 1 and PT = 0, and vary the 
parameters PA, R, o, and a. Since PT = 0 and R > 0, ignition will occur in the vortex 
centre. Figure 10(a, b) is plots of t,, versus the phase angle @ for PA = 2 and 4, 
respectively, and for vortex Reynolds number R = 0 (solid) and R = 100 (dashed) with 
o = 0.5. The results with R = 0 (solid) are taken from figure 7 and given here as a 
reference when R > 0. From figure 10 we see that the effect of increasing R is to 
decrease slightly the ignition time for any phase. This is consistent with previous results 
obtained when pressure disturbances were ignored (Macaraeg et al. 1992). 

To illustrate the structure in the high-frequency limit, we plot in figures 11 (a) and 
l l (b)  the maximum of the temperature perturbation as a function of time for 
o = 5 and 10, respectively, and for various values of the vortex Reynolds number 
R with PA = 2, = n/lO, and PT = 0. The special case of R = 0 was previously shown 
in figure 9 and is used here as a reference case for when R > 0. In both figures, the 
structure is similar to the R = 0 case, except that increasing R decreases the ignition 
time slightly until about R = 100, when the ignition time remains constant as R is 
increased further. As stated earlier, the temperature maximum always occurs in the 
vortex centre. 

3.3. Approximation for the ignition time 
Since a certain amount of mixing must take place before ignition, a surprisingly good 
approximation to the ignition time in the presence of a pressure disturbance can be 
found by considering the 'homogeneous' problem 

(3.24) 

where the factor t$ is the ignition time in the absence of a pressure disturbance chosen 
to be the Linan & Crespo (1976) result, which accounts for the role that diffusion plays 
in the mixing of the reactants as well as the role that the initial temperature profile 
plays. For PT = -2, 0, and 2, we find that tg = 13.1961, 5.8285, and 1.7736, 
respectively, for our choice of the timescales (3.4). Integrating (3.24), we find that 

(3.25) 
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FIGURE 11. Plot of the maximum temperature perturbation as a function of time for (a) o = 5, 
and (b) w = 10 with PA = 2, 4p = x/lO, p, = 0 and for (i) R = 10, (ii) R = 50, and (iii) R = 100. The 
dashed core is the corresponding sinusoidal pressure profile. 

Ignition takes place when the quantity in square brackets of (3.25) vanishes; that is, the 
‘homogeneous’ ignition time t: is given implicitly by the equation 

(3.26) 

In the absence of a pressure disturbance, P,(t) = 0 and therefore t: = t;. Below we give 
selected comparisons between the ignition times predicted by this ‘ homogeneous ’ 
theory and by the full numerical solutions of the previous subsections. 
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First, consider the simple linear pressure profile given by (3.19). Substitution into 
(3.26) yields for the approximate ignition time 

- 1  t: = :ln[l -wtg] .  (3.27) 

Note that (3.271, in addition to detimng the approximate ignition time, also 
approximates the critical value of w for which ignition can take place. That is, ignition 
occurs for 0 < w < or, where w r  = l / t $  is the critical value; for w > w r ,  ignition does 
not take place. In figure 12(a) we plot the ignition times for the numerical solutions of 
$3.1.1 (solid) and the approximate solutions (dashed) for PT = - 2 ,  0 ,  and 2 as a 
function of w. For each PT, note that the approximate ignition times compare rather 
well to those obtained from the full solutions. Now compare the sinusoidal pressure 
function given by (3.21). For this case, (3.26) must be solved implicitly for $ for fixed 
values of PA, w, Q, and BT. In figure 12(b, c) we plot the ignition times for the numerical 
solutions of $3.1.3 (solid) and the approximate solutions (dashed) as a function of 
phase 0 and for PA = 4, w = 0.1 and PA = 4, w = 0.5, respectively, with pT = 0. In each 
figure note how well the approximate ignition times compare to the ignition times of 
the full numerical problem. Thus, we see that our theory of homogeneous ignition 
predicts surprisingly well the true ignition times. Finally, we note here that our 
definition of the homogeneous ignition time can also be used to predict ignition 
when vortical motion is present, since ignition times vary little with vortex Reynolds 
number R. 
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4. Direct numerical simulation 
To investigate post-ignition events up to the development of a flame sheet, the direct 

numerical solution to (2.3) is necessary. Unfortunately, as mentioned above, the 
numerical solution of the full system (2.3) presents a formidable task. One 
approximation which will simplify (2.3) to a more tractable system and has often 
appeared in the literature is the assumption of small heat release (e.g. Matkowsky & 
Sivashinsky 1979; Van Harten et al. 1984). The resulting system can then be solved 
numerically. We begin the analysis of small heat release by assuming B < 1.  The 
temperature and density must now be rescaled according to 

T+ 1 +AT+ a t ) ) ,  p + 1 +Pp, (4.1) 
while the other variables remain unchanged. To leading order in p, the system (2.3) 
reduces to 

for the temperature and mass fractions, while the leading-order solution to the 
continuity and momentum equations (2.3 b-e) is the incompressible vortex solution 
(3.5E(3.7). The density can be found from the gas law. In the above equations, 
h = P Z e  is the product of the heat release parameter and Zeldovich number, 
S = Py/(y - l), and (3.4) with A = 4 has been used in the definition of the Damkohler 
number. Finally, we note here that by using the definition (4.1) for the temperature, we 
have subtracted out the time-varying part due to pressure fluctuations; that is, if T 
oscillates at any point in the flow field, it will be due solely to the nonlinear source term 
in (4.2). 

The system (4.2)-(4.3) must be solved numerically subject to the boundary and initial 
conditions 

T=O,F,= 1,1;=0 at t = O , r > O , O < B < n :  and t > O , r + c o , O < B < n ,  

T = PT,F, = 0,e = 4-l at t = 0, r > 0,n < 8 < 27c and 
(4.4a) 

t > o,r+ C0,'Ic < B < 271. (4.4b) 

This system was solved by the finite difference scheme mentioned in $3. To illustrate 
the numerical solution of the continuous evolution from nearly frozen flow to near- 
equilibrium flow, we produce here selected results using the sinusoidal pressure 
function (3.21) for P,(t). In all calculations we take Sc = q5 = 1 and BT = 0. 

To investigate the combined effects of a pressure disturbance and of vortical motion 
on the structure of the full solution, we begin by examining the structure in the absence 
of these effects. Figure 13 (a) is a plot of the maximum values of T as a function of time 
for R = 0, &(t) = 0 and h = 1, 0.1 and 0.01. Since )BT = 0 and R = 0, this maximum 
occurs along the line z = 0. For h = 1, the temperature increases gradually from zero 
at t = 0 to T = 0.5 as t --f 00, this maximum value corresponding to the flame sheet 
value given in the next section. As h decreases from one, the rise in temperature near 
t = 0 increases sharply, indicating the existence of a well-defined ignition regime. An 
interesting trend develops if pressure fluctuations are now included. In figure 13 (b) we 
plot the maximum values of the temperature as a function of time for R = 0 and for 
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FIGURE 13. Plot of the maximum temperature T as a function of time for h = 1, 0.1, 0.01, and for (a) 
P,(t) = 0 and R = 0; (b) PA = 4, w = 0.5, @ = 1.251t, and R = 0; and (c)  PA = 4, w = 0.5, @ = 1.25x, 
and R = 50. 

the sinusoidal pressure function (3.21) with PA = 4, w = 0.5 and @ = 1.257~. For 
h = 1 and 0.1, the temperature rises from t = 0 to a maximum value slightly below the 
flame sheet value of 0.5, and then begins to oscillate in time with decreasing amplitude; 
as t +  00, the oscillations die out and the temperature maximum approaches the value 
0.5. As h is decreased from 0.1 to 0.01, ignition takes place so rapidly that the acoustic 
field is seen to have almost no effect on the temperature field. The absence of any effect 
due to pressure disturbance is consistent with the flame sheet solution presented in the 
following section. A surprising phenomenon occurs when vortical motion is included. 
In figure 13 (c) we again plot the maximum values of the temperature as a function of 
time, again for h = 1 ,  0.1 and 0.01, with R = 50 and the same pressure profile as in 
figure 13 (b). Since PT = 0 and R > 0, this maximum occurs in the vortex centre. Note 
that for all three values of A, the temperature profile evolves in time with little influence 
from the pressure field. That is, the temperature within the viscous core, once it reaches 
a maximum, remains almost constant with time, indicating that viscous effects damp 
out the acoustics. In contrast, we show in figure 14 the maximum temperature at the 
origin (solid) and the maximum temperature far away from the core (dashed) as a 
function of time for the same conditions as in figure 1 ( c )  with h = 1. From this figure 
we see that, although the temperature within the core remains almost constant with 
time, the outer flow is oscillating. This is consistent with figure 13(b), since the outer 
flow does not feel the influence of the vortex so that the acoustic field has a noticeable 
effect. Finally, the oscillations in the outer flow will eventually die out, consistent with 
the flame sheet solution given in the next section. 
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5. Diffusion flame regime 
After ignition has taken place, a thin diffusion flame exists and is characterized by 

a chemical reaction time that is much smaller than a characteristic diffusion time. 
Chemical reactions then occur in a narrow zone between the fuel and the oxidizer, 
where the concentrations of both reactants are very small. Mathematically, the 
assumption of very fast chemical reaction rates leads to the limit of infinite Damkohler 
number, which reduces the diffusion flame to a flame sheet (i.e. local chemical 
equilibrium). This assumption significantly reduces the complexity of the problem since 
it eliminates the analysis associated with the chemical kinetics. For many flows, the 
assumption of local chemical equilibrium adequately predicts the location and the 
shape of the diffusion flame (Buckmaster & Ludford 1982; Williams 1985). For finite 
values of the Damkohler number, (4.2) must be solved numerically; and this was done 
in the previous section. 

We begin the description of the diffusion flame regime by defining the following 
conserved variables (see e.g. Williams 1985) : 

T+F, = P T + ( l - P T ) Z ,  (5.1) 
T+& =@T+#-')(l-Z), (5.2) 

4 -4 + 4-l 
1 + p  ' 

Z =  (5.3) 

where 2 is the mixture mass fraction and satisfies the convection-diffusion equation 

(5.4) 

subject to the initial and boundary conditions 
Z =  1 at t = O , r > O , O < e < n  and t > O , r + c o , O < O < n ,  (5.5a) 

Z = O  at t = O , r > O , n < B < 2 n  and t > O , r + c o , n < O < < n .  (5.5b) 
In the limit h + 0 (i.e. infinite Damkohler number) the flame-sheet solution is given by 

4 = l-(l+#-l)(l--Z), 4 = 0, (5.6a) 
T = (PT + 4-l) (1 -2)' (5.6b) 
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valid for Z > Z,, and 4 = 0, F, = 4-l - (1 + 4-’) 2, (5.7a) 

T = PT + (1 -PT) Z ,  (5.7b) 

valid for 2 -= 2,. Here, Z,  defines the location of the flame sheet where both the 
reactants vanish, given by the implicit relation 

and T takes the adiabatic flame value 

(5.8a) 

(5.8b) 

Note that the flame location is independent of PT and /3. Once 2 = Z(r, 8, t)  is known, 
then the other variables (T ,4 ,F, )  can be found from (5.6)-(5.7). We remark here that 
if PT = 0 and 4 = 1, then $ = 0.5, which is consistent with figures 13 and 14. We also 
note that the flame-sheet structure and position is independent of the pressure 
disturbance P,(t), again consistent with figures 13 and 14 in the limit t +  co. 

As mentioned in the Introduction, equation (5.4) for Z is exactly Marble’s (1985) 
problem when ignition events are ignored (i.e. the vortex is turned on at t = 0 with the 
initial configuration given by the flame sheet), though derived for order-one heat 
release and with the constant-density approximation, and was solved numerically by 
Laverdant & Candel (1988) and Rehm et al. (1989). 

6. Conclusions 
The problem of a flame interacting with a vortex is assumed to model certain 

fundamental mechanisms of turbulent diffusion flames which form the basis of many 
propulsion devices. Acoustic waves are always present in these combustion systems, so 
that it is important to study the role of acoustics in such flame/vortex interactions. 
Having said this, we refrain from any further comment on the implications of the 
present study to practical applications. 

The present study assumes a one-step, irreversible Arrhenius reaction between 
initially unmixed species occupying adjacent half-planes which are allowed to mix and 
react by convection and diffusion in the presence or absence of a vortex, and 
investigates the influence of the acoustic field (spatially uniform but time-dependent 
pressure waves of small amplitude) on the ignition time and flame structure which are 
functions of vortex Reynolds number, initial temperature difference of the reactants, 
equivalence ratio and Schmidt numbers. 

In the case of zero vortex Reynolds number and near-equal initial temperatures of 
the reactants, this study concludes that the low-frequency pressure waves accelerate or 
decelerate ignition depending on the phase; the pressure waves with moderate to high 
frequencies always enhance ignition and are essentially independent of phase. Another 
key result is that the simple theory of homogeneous ignition developed in this study is 
found to predict these trends very well, and therefore it is proposed as a good 
engineering approximation for obtaining the ignition times for the more complicated 
flow fields. When vortical motion was included, the overall ignition time decreases 
slightly and then asymptotes to a finite value with increasing vortex Reynolds number, 
consistent with previous results obtained by ignoring acoustics (Macaraeg et al. 1992). 
While the asymptotic analysis is confined to incipient ignition, a direct numerical 
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simulation is carried out to investigate post-ignition events. This is limited by the small- 
heat-release assumption. Relaxing this rather drastically restrictive assumption is 
worth a serious attempt. An important conclusion from the numerical investigation is 
that acoustics has little effect on the flow field in the vortex core, while the flow outside 
the core oscillates. It is believed that viscosity in the reacted core damps out the 
acoustic field. 
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